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J .  Phys.: Condens. Matter 2 (1990) 5539-5553. Printed in the UK 

Reduction factors, tunnelling splitting and zero-phonon line 
intensity in T @ 7, and T @ (r2 @ E )  Jahn-Teller systems 

M C M O’Brien 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 1 March 1990 

Abstract. First- and second-order reduction factors for the Jahn-Teller systems 
T 8 ( 7 2  EI e )  and T @3 7 2  are calculated using a numerical perturbation method, and 
checked analytically at strong and weak coupling. Those for T 8 7 2  are compared 
with ones produced analytically by Bates and Dunn, and the general agreement is 
good. An attempt to find an asymptotic formula for the tunnelling sp l i thg  showed 
its form to be still uncertain with the splitting as small as lO-’hw, but the fit with 
a W K B  calculation is good. The zer-phonon line intensity in T 8 T is calculated 
numerically and analytically. 

1. Introduction 

It was originally Ham (1965) who pointed out,  when discussing what happened t o  
the spin-orbit coupling when a p state was coupled to  a set of C-type vibrations, that  
the effect within the ground triplet state could be characterised by a set of reduced 
matrix elements, or reduction factors. These could be divided into those that gave 
the reduction of operators taken t o  first order within the ground state, and those 
allowing for second-order effects when the spin-orbit coupling was small compared to  
the Jahn-Teller splitting. Obviously the second-order terms become important only 
when the first-order ones are small, as they may be a t  strong coupling. Over the years 
the calculation and measurement of these factors has formed an important part of the 
characterisation of any Jahn-Teller system under consideration, and a considerable 
body of information has built up about these factors. The work presented here aims 
t o  fill some gaps in the existing calculations with some information that may be useful. 
The first part is a calculation of the second-order reduction factors in the special case of 
a triplet state equally coupled to  degenerate r2 and E vibrations. This system has been 
studied because the assumed symmetry makes for an elegant way of handling a strongly 
coupled system numerically, and the results obtained can be usefully compared with 
results in other regimes. The second is a similar calculation of second-order reduction 
factors in a triplet state coupled linearly t o  a set of r2 vibrations. 

In a recent set of papers, Bates and Dunn (1989), Dunn and Bates (1989) have 
used transformation methods to  calculate some of these reduction factors, and they 
give numerical results for a range of coupling strengths and a variety of different types 
of coupling. As their method starts from strongly coupled vibronic wave functions 
localised in phase space it was not suitable for use with T @ (r2 @ E) in equal linear 
coupling, so the results given here can be used for interpolation but not for comparison. 
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On the other hand Bates and Dunn do apply their method to  T @ T ~ ,  so this calculation, 
which is done by a quite different method, should serve as a useful cross-check. We 
round off this part of the paper by setting out the forms of the reduction factors at 
large and small k. 

Finally we present numerical and analytical calculations of the intensity of the zero- 
phonon line in T @ T .  These results have not been given before, and the numerical 
results come naturally out of the rest of the work. 

2. Form of the effective Hamiltonian 

We are looking at a system in which a p state is sufficiently strongly coupled to  the 
vibrations for the spin-orbit coupling to be more or less quenched in the ground state. 
The coupling is linear and the cluster model is assumed. The ground state is still a TI 
triplet, and the spin-orbit coupling, X 1 - S in the uncoupled states, is represented up to 
second order in X by an effective Hamiltonian. The form of this effective Hamiltonian 
can be predicted on symmetry grounds, and in particular it can be seen that one 
constant is needed for the first order terms and four constants for the second-order 
terms. The first-order terms involve just one reduced matrix element, and will be 
written as in earlier work as 

For the second-order terms we note that within the 1 = 1 basis we can use tensor 
operators corresponding to  1 = 0 , 1 , 2  and that within the cubic symmetry the 1 = 2 
tensor splits into independent T,-type and E-type tensors. Accordingly we shall write 
the second-order terms as 

W.2 = X2[A(Z. S) + i B E E ( 1 )  .E(S)  + i B T 7 ( 1 )  - 7 ( S )  + Cl(I + l)S(S + l)] (2) 

where the tensor operators E and 7 are the two parts of the 1 = 2 tensor operator, 
operating in orbital space and in spin space. The normalisation of these operators is 
best defined by noting the identity 

( 1  * S)’ = -!j(Z * S) + if(/) * E(S) + $7(1) - 7 ( S )  + $ l ( [  + 1)S(S + 1) .  (3) 

This can be compared with the form given by Ham (1965, equation (2.34)), to  give 
for T 8 E: BT = -2A = Kl and BE = 3C = ( K ,  + K,)  in  terms of his constants. 
In this case the parameters were calculated analytically, using an exact adiabatic 
method, and we show the results of that calculation in figure l(a) for comparison 
with results on other systems. The reduction factors are plotted against the coupling 

Figure 1 (facing p a g e ) .  ( a )  T @ E  reduction factors from Ham (1965). - = K(Tl),  x - x - x = A, 
t - * - t = BE, 0 - 0 - 0 = BT and A - A - A = C. ( b )  T @ 7 2  reduction factors from Bates 
and D u n  (1989) and Dunn e t  a /  (19%). - = K(T1) = h’(E), x - x - x = A ,  * - t - t = B E ,  
0 - 0 - 0 = BT and A - A - A = C. (The difference found between K(T1) and K(E) is small, 
and is not shown here.) (c) T @ ( 7 2  @ E )  reduction factors, numerical calculation. __ = K(Tl), 
X - X - x  = A , * - + - t = B  = BE = B ~ , a n d n - A - h = C .  (d)T@~~reduct ionfac tors ,n~~ner ica l  

0 - 0 - 0 = BT, A - A - A = C and - . - = tunnelling splitting. 
calculation. - = K(T1), - - - = K ( T z ) ,  - - - = K(E), x - x - x = A ,  * - t - t = B E ,  
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strength, k, where k: = (3/2)EJT, and the classical Jahn-Teller energy is f i~EjT.  
In the strong-coupling regime where the second-order terms are important they are 
dominated by the fact that  K 2  >> K , ,  so BE and C are the important parameters, 
and would determine the pattern of energy levels. In the calculation this inequality 
corresponds to  the larger size of second-order terms that begin and end in the same 
well over those that connect different wells. 

We must also connect our constants with those used by Bates and Dunn (1989, 
equation (3.8)). The  comparison gives, for our constants in terms of theirs, K(T,)  = y,  
A = -b/2, BE = b + 3c/2, B, = b + 2d and C = b/3 + e.  (This equivalence assumes 
the separation of first- and second-order terms implied in their (3.8), and does not 
correspond t o  their alternative form (their (4.14)) where some of the second-order 
terms are included in y.) These results have now been slightly modified (Dunn et a1 
1990), and they are plotted in a preliminary version in figure l(b), against k,, where 
k: = (3/2)EJT. I t  is pleasing t o  see the similarity with T @ c  with the roles of BE and 
B, interchanged. As these authors use an adiabatic approximation, the inequality 
can presumably be attributed to  a similar geometric effect. 

3.1. Theory 

The simplicity of working with this equal-coupling or D-mode system comes from the 
invarience of the Hamiltonian under a complete set of rotations in three dimensions, 
so all eigenstates can be characterised by angular momentum quantum numbers, and 
all bilinear operators can be expressed as tensor products. There is also the advantage 
that the routine of setting up and diagonalising the matrices has often been done and 
is well understood. The  ground state of the Jahn-Teller coupled system is a P state, 
the same as the uncoupled electronic state, and we assume that  there is a spin of 
multiplicity n that  is coupled in by the usual spin-orbit coupling. We use the set of 
operators defined in the previous section, but with this higher symmetry we must have 
BE = BT = B.  A convenient way of writing the second-order terms is then 

3t2 = X2{A(Z * S )  + B[(Z S)z + % ( I  - S) - $1(1+ l)S(S + l)] + CI(l+ 1)S(S + 1)) .  

(4) 

As we propose to  use the S = 1/2 case (two matrices) for our calculations, it being 
already set up and working, a t  least one more matrix has to  be devised for the order-2 
reduction factor. The fact that  the reduction factors go with the 1 operator rather 
than with Z .  S is slightly obscured by this form, but it is much easier t o  handle than 
the raw tensors. In the special case S = 1/2 this reduces to  

3tz = X2[A(Z* S) + ZC]. (5) 

The B-term has gone because a second-order tensor is zero S = 1/2. 
I t  is clear from the above that  by working with the existing matrices for S = 1/2 we 

can expect to  be able to  find K(T , ) ,  A and C, but that  another piece of information is 
needed to  find B .  I t  turns out that  a convenient way to  do this is to use the matrices 
for IP,, and 3P1 which are closely related to  those for 2Pl /2  and 2P,,2 respectively. 
As we now have four matrices for the three unknowns A ,  B and C we can check the 
correctness of the calculations. 



T 8 r2 and T @ (r2 @ E )  Jahn-Teller syslem,s 5543 

First we look a t  the related structures of the 2Pl / ,  and 3P0 matrices. After 
coupling the P state to  the vibrations, but before introducing the spin, the coupled 
states exist in sets corresponding to  L = 1, L = 2 etc (no L = 0) (O'Brien 1971, 
1976). To  couple in a spin of 1 /2  to  get a resultant j = 1/2 only the L = 1 states are 
needed; likewise a spin of 1 can only give j = 0 when coupled to  the L = 1 states. 
Consequently there is an exact correspondence between these two matrices, with the 
only difference being in the matrix elements of the operator XI .  S. As was described 
previously the basis states of L = 1 derive from phonon states of angular momentum 
0 or 2 coupled t o  the original p state, and the matrix elements are found by using 
appropriate vector coupling formulae. When we do this for 3P0 and compare it with 
'PI/, we find that  the only difference is that X is replaced by 2X, so in fact no new 
calculations need be done. 

The related structures of the 'P,,, and 3P1 matrices are slightly more complicated. 
To couple a spin of 1/2 to get j = 3/2 we need both the L = 1 and L = 2 states, 
the L = 2 states derive from phonon states of angular momentsum 2 and 3, so our 
matrix will contain two sorts of L = 2 states as well as two sorts of L = 1 states, and 
this means there are five different sorts of matrix element of X Z .  S to be worked out 
using vector coupling theory. This was done for the calculations described in O'Brien 
(1976) . To couple a spin of 1 to get j = 1 we also need both the L = 1 and L = 2 
states and no more. Consequently the 3P, matrix only differs from the 2P3/, matrix 
because matrix elements of X 1 - S will be different, though they will occur in the same 
places. I t  is consequently very easy to convert the one mat3rix into the other, and this 
is what has been done. 

3.2. Numerical work for T @ (r, + 6 )  

Each of the matrices described above was set up and diagonalised, using the Lanczos 
routine for sparse matrices as usual. As we only need look for the lowest eigenvalue 
this routine runs extremely quickly to produce a very accurate eigenvalue. In order to  
pick out the perturbations to  first and second order in X the eigenvalue was calculated 
for five or more different small values of X clustering round zero, and the energy was 
fitted to  a polynomial in A ,  and this was done for a variety of different Jahn-Teller 
coupling strengths. 

In order to interpret the results we need the following table of second-order terms 

for 'PI/, 

for ?P3/2 

for 3 ~ 0  

X 2  = X2(-A + !C)  

31? = X 2 ( + A  + ZC) 

31, = X2(-2A + i B  + 4C) 

for 3 ~ ,  

for 3 ~ ,  

312 = A'( - A  - f B  + 4C) 

?I!, = X2(A+ $B$4C) .  
The relationship between 2P,/2 and 3P0 gives the simple equation 

- 2A + 5 B + 4C = 4( -A + ! C) . 

for 3 ~ 1  3t2 = x2(c) (8) 

(7) 
Using this to eliminate B gives the second-order terms for the triplet states as 

for 3P0 

for 3P, 

R2 = X2(-4A + 6C)  

31, = X2($A + Y C ) .  
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The  procedure used was to  run the doublet matrices t o  get values of A and C ,  and then 
to  run the 3P1 matrix t o  check that the same value of C was obtained. The results are 
plotted in figure l(c).  against k, where k2 = (3/2)EJT and the classical Jahn-Teller 
energy is hwEjT. (This scale is chosen for k so as to  be easily compared with the 
other results.) As can be seen, we agree with Dunn and Bates (1989) in finding the 
second-order terms smaller than a t  unequal coupling, though we do not find such a 
marked effect. We do find B and C dominate A and K(T1) a t  large coupling, so as 
with the other two cases there is a patt,ern of energy levels that  only depends on the 
coupling being strong enough. 

4. Theory and numerical work for T 8 r2 

Although this system only involves threefold degeneracy of the vibrations as compared 
with the fivefold degeneracy in the previous case, i t  is actually more difficult to  handle 
because of the lack of an extra, accidental symmetry. The first numerical work over 
the range of coupling strengths by Caner and Englman (1966) was not improved on 
for a long time because, in order to produce symmetry-adapted wave functions, it 
used a tabulation of spherical harmonics that could not be generalised. Sakamoto and 
Muramatsu (1978) devised and used a method of setting up the matrices without using 
symmetry-adapted wave funct,ions, a t  the expense of having much larger matrices. 
Sakamoto (1980) extended this calculation to  include angular momentum operators, 
and his method is the one that will be followed here. This met.hod produces large, 
real matrices which are diagonalised using the Lanczos process, and computing times 
remain reasonable in this study, because we are only interested in the energies of the 
lowest states. 

The Sakamoto method uses a set of basis states which can be written 

I P , n l , n 2 , n 3 , S z , f l )  (9) 

where p is one member of the T triplet, (z, y ,  z ) ,  and these p stbates are real; n l ,  n2 and 
n3 are the number of excitations in each of the three components of the r2 vibrational 
state, and s, is the spin component (s = 1/2 is assumed). The final parameter, f l ,  
is an index that  doubles the number of bases so as to  change a complex Hermitian 
matrix into a real symmetric one. If the actual matrix is A = l? + iC, in terms of real 
matrices, then we look for the eigenvalues of the real symmetric ma.trix 

v=(; -;). 
This matrix has the same eigenvalues as A,  but ea.ch appears twice (Sakamoto 1980). 
The Lanczos method automatically picks out one of a set of degenerate eigenvalues. 

As before, the matrix was set up and diagonalised for a variety of different Jahn- 
Teller coupling strengths and the operator A I - S was included for several small values 
of A. The two lowest energies were t,hen fitted to  polynomiab in A, and from the 
coefficients in the polynomials the quantities A'(Tl), A and C could be deduced. The 
starting vector of the Lanczos process was chosen so that both of the two lowest levels 
appeared in the result. Since S = 1/2 these matrices will not give us BE or BT. 
The large size of this matrix, even for a moderate phonon excitat,ion number, made 
it difficult to  run reliably a t  the higher coupling strengths. It was necessary to  check 
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for truncation errors by cautiously increasing the number of phonon excitations and 
seeing whether the results changed. 

Because of the problem of matrix size it did not seem sensible to work with S = 1, 
as was done for T@(r,@e), but instead the orbital operator, 1, was introduced without 
the spin. For this new calculation the basis states were 

IP ,n l ,%,n , , f l )  (11) 

so for a given level of phonon excitation the matrix was half the size. Two different 
operators were used: I ,  and I ,  + 1, + 1,. Using the same sort of polynomial analysis 
as before, the first operator gives us IC(T,), BE and C, and the second one gives us 
K(T,), BT and C ,  and clearly the duplication of the parameters calculated gives an 
extra check on the results, which are plotted in figure l(d). 

A final layer of the calculation was  undertaken in order to  calculate the other 
first-order reduction factors as well as the tunnelling splitting. For these the operators 
are real, so the Sakamoto duplication device could be abandoned, and the basis states 
were just 

I P l ~ 1 , % , 4 .  (12) 

Two different operators were used, one E-type and one T,-type, and the starting 
vector was chosen so that the first excited singlet state appeared as well as the ground 
triplet. For the calculation of K(E) and I<(T,) the polynomial fit method was again 
used, but with these smaller matrices it was easier to push up the coupling strength, 
and the results are also shown in figure l(d). 

The second-order reduction factors become important at  moderately strong cou- 
pling where they outweigh the effect of K(Tl). Here the important result is that 
lBTI >> !BE], which agrees with Bates and Dunn (1989), and enables the pattern of 
zero-phonon line splittings to be predicted unambiguously. The quantity C which is 
also large has no effect on the splittings. Our results differ somewhat from Bates and 
Dunn (1989) and Dunn e t  a1 (1990), though the overall pattern is still remarkably 
similar. A comparison of the different results for BT, I<(T,) and K(E) is shown in 
figure 2. 

Our values for the first-order reduction factors confirm the results of Caner and 
Englman (1966) in particular showing I<(T,) approaching 2/3 from below, and show- 
ing K(E)/I<(T,) > 1 with the ratio increasing with increasing coupling strength. This 
latter inequality was shown by Ham (1990) to  be associated with the different effects 
of the adiabatic approximation on these two factors, and it was not so large in the 
approximation used by Dunn and Bates. 

One reason for finding better numerical values of the first-order reduction factors 
was to look at  the prediction of Leung and Kleiner (1974). These authors showed that 
the quantity 

3f(T,) = 1 - $(l<(T,) - I<(Tl)) - K(E) (13) 

was either very small and positive or zero over the whole range of coupling strengths. 
3f(T,) was previously calculated by Sakamoto and Muramatsu (1978), and we agree 
closely with them in finding it small and rising up to a maximum at abaut I C ,  = 3,  
after which we find it starts to fall again (see table 1). 

The value of I<(T,) in strong coupling can also be compared with the prediction 
by Ham (1990) that - K(T,) -+ constant/IC:. Using Ham's calculation and allowing 
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Figure 2. A comparison of Bates and Donn (1989) and Dunn e t  al  (1990) and this 
work. - - - - - K(T1) = K(E) from Bates and Dunn. + - + - + = BT from 
Dunn et al. - =  TI), - - - = K(E), and 0-0-0 = BT from this work. 

Table 1. Values of first-order reduction fact,ors. 

0.5 
0.75 
1 
1.5 
2 
2.5 
2.8 
3 
3.4 
3.8 

0.90209 
0.82596 
0.76097 
0.67867 
0.65020 
0.6492 
0.6517 
0.6532 
0.6562 
0.6580 

0.71600 
0.50863 
0.33977 
0.13040 
0.03797 
0.00729 
0.00219 
0.0001 

0.72085 
0.54200 
0.36817 
0.17695 
0.07713 
0.01448 
0.00970 
0.0048 
0.00095 

6.46 x 
4.53 x 1 0 - ~  
1.27 x lo-) 
1.60 x 
1.69 X 

<1.62 X 
<1.30 x 

in addition for the spheroidal symmetry of the trigonal wells we find the constant in 
this expression to  be (1/4)/(6)’/’, and this is consistent with the numerical results. 
On the other hand K(E) approaches zero by something like a l/k; law. 

5. Approximate values of the second-order reduction factors 

5.1. Small k 

The values of the second-order reduction factors a,t small coupling strengths are cal- 
culated using perturbation theory. It turns out that to  get these factors t o  order k’ 
it is only necessary to  include corrections to  the states to  first order in k. To this 
order the admixtures of excitations of different normal modes are independent, so the 
reduction factors for T @ T and T @ E add up to give those for T @ (T @ E ) .  They are 
shown in table 2. These results are of no importance experimentally as the effect of 
the spin-orbit coupling at second order is swamped by the first-order term at weak 
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coupling, but they provide a useful check of results found by other methods. In par- 
ticular they are fitted by the numerical results. The results for T @ r have been given 
by Polinger (1989), and those for T @ E can be derived from Ham’s formulae (1965). 

Table 2. Second-order reduction factors at weak coupling. 

5.2. Large k 
To find the asymptotic forms of the reduction factors for large IC we start by writing 
the basis for the lowest adiabatic potential energy surface as 

(sin 6’ cos 4, sin 6’ sin 4 ,  cos 6’) (14) 

and finding the expectation values of t,he various operators in this stat,e, as was done 
for K(E) and K(T2)  in O’Brien (1969). For the second-order reduction factors there 
is no diagonal expectation value, but there is a contribution in second-order perturba- 
tion from the coupling between the different APES. In this approximation the energy 
difference between the APES is 2k2 at the relevant point in phase space, while the 6’,4 
form of the operator is closely related to the operators for K(E) and I<(T2). The 
result is the set of asymptotic values shown in table 3, which are well fitted by the 
numerical values at  large k. The results for T @ r agree wit,h Polinger (1989), and 
those for T @ E with Ham (1965). Values of the asymptotic reduction fact,ors arising 
from other mixtures of coupling strengths can be deduced from the values of I<(T2) 
and K(E) in O’Brien (1969). 

Table 3. Second-order reduction factors at strong coupling. 

A BE BT C B$J 

0 K(E)/2k2 K(T2)/2k2 1/6k2 (AllT211T)/2k2 

Another effect that comes in at  strong coupling is the coupling of the singlet, 
A,  state to  the ground triplet. This must be included when the tunnelling splitting 
becomes comparable to the second-order spin-orbit coupling. The asymptotic value 
of the cross-term can be calculat,ed in exactly the same way as the other asymptotic 
values, and is shown in the last column of the table. It is mainly relevant, for T @ r .  
The value of BetT can be extracted from our numerical work, with some difficulty. 
Where k is large the result agrees with the asymptotic formula, and its value at  smaller 
k is unimportant. 
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As the coupling strength moves from being purely T@r to T@(T@E) the asymptotic 
tunnelling splitting becomes greater, until a t  equal (strong) coupling the level splittings 
go as 1/k2 (O’Brien 1969), but there are many more of them, and consequently more 
second order reduction factors to  be considered. They could be found by vect,or 
coupling methods, but seem too unlikely to  be needed t o  be worth tabulating here. 

6. Tunnelling splitting in T @ T 

One quantity looked a t  was the tunnelling splitting, the energy difference between 
the lowest triplet state and the first excited singlet state, and in particular we tried 
t o  find an asymptotic form for this splitting at strong coupling. For this purpose the 
calculation was pushed t o  the point where this splitting, A ,  was - a t  which point 
the matrix size needed for convergence was - 70 000 x 70 000 and the computation 
became difficult. We tried t o  find the best values of a ,  b and c t,o fit the splitting to  
the relation 

log(A) M a + b log( k,) + ck: (151 
where kT is the coupling strength, which is related to the Jahn-Teller energy by 
EjT = ik?. As a, b and c may themselves vary with k,, this was done by a simple 
linear fitting of this formula to  three successive values of A and k,. The results are 
shown in table 4. 

Table 4. Tunnelling splitting and fitting parameters. 

1.5 3.11 x 10-1 
2 1.386 x 10-1 
2.5 4.253 x 
2.8 1.663 x 
3 8.207 x 
3.4 1.635 x 
3.6 6.625 X 

4 9.014 X IOd5 
3.8 2.520 x 

4.4 9.614 x 
4.7 1.534 x 
5 2.145 X 

-0.167 
-0.425 
-0.517 
-0.468 
-0.385 
-0.280 
-0.199 
-0.102 
-0.027 
+0.126 

1.049 
1.920 
2.116 
2.029 
1.903 
1.763 
1.664 
1.549 
1.470 
1.319 

-0.634 
-0.721 
-0.735 
-0.729 
-0.723 
-0.717 
-0.714 
-0.710 
-0.708 
-0.704 

As can be seen we seem to have a fit with a A - 0.7EJTexp(-1.1EJT) law in the 
neighbourhood of k, = 3,  but there is a shift to a lower power of k, in the prefactor 
as the coupling gets stronger, and a more sophisticated computation is needed t o  get 
a true asymptotic form. 

A discussion of methods of calculating this quantity analytically is given by 
Bersuker and Polinger (1989), and by O’Brien (1989). A simple overlap method gives 

A 0: EJT exp(-1.24EJT) (16) 
which is clearly too small, while a calculation by Polinger (19741, which includes the 
calculation of a tunnelling integral, gives 

4 
2T 

A M -( $) l I2  exp(-0.73EJT) 
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t 

c 

Figure 3. Log of tunnelling splitting plotted against k:: - = Polinger (1990), 
x - x - x = numerical. 

which looks like being too large, asymptotically. O’Brien (1989) suggests a 

A o( k, exp(-ck:) (18) 

law, without predicting a value of c. More recently Polinger (1990) has recalculated 
the splitting, using numerical integration of the WKB theory, and produced the result 
shown in figure 3. The  points between k = 2 and k = 8 fit well to a = 0.578, b = 1.070 
and c = -0.732, or 

A = 1.78k~.07exp(-0.732k~) (19) 

and figure 3 shows this result as remarkably similar to  the numerical ones. 

7. The zero-phonon line in T @ T 

The intensity of the zero-phonon line in T @ T can be found immediately from our 
matrix calculations, and is shown in table 5 for a variety of values of I C , .  In vibronic 
bands without Jahn-Teller coupling this intensity is well known to be exp(-S) where 
S, the Huang-Rees factor, is the energy of the zero-phonon level below the uncoupled 
state. The analogue in the case of a Jahn-Teller system would be to  have an intensity 
of exp(-EJT), but in these systems there are usually geometric effects which alter 
this simple rule. As can be seen from the table our numerical results suggest that  a t  
strong coupling the intensity is tending to  something like 1.76exp(-EJT), where the 
numerical coefficient is changing rather little. Since, to  the author’s knowledge, this 
intensity has not been calculated before, we present the calculation that  follows. 

We start  by remarking that  a t  strong coupling the vibronic wave function for T@T 
is isolated in a set of wells that  are localised in the vibrational phase space by the 
formation of minima in the lowest adiabatic potential energy surface. As all these 
wells are related by symmetry we can start  by concentrating on the overlap of the 
uncoupled ground state with one of them. We accordingly consider the well in the 
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( 1 ,  1 , l )  direction in the space of the three vibrational coordinates, and make a suitable 
choice of basis and simultaneously rotate and displace the axes so that the Jahn-Teller 
interaction matrix and potential energy that started by looking like 

L ( X 2 + Y 2 + Z 2 ) + k 7  2 

ends up looking like 

0 
l ( X 2  2 + Y 2  + Z 2 )  + k ,  

0 0 - z k 2  3 7  

where X ,  Y ,  2 are measured from the position of the 1 , 1 , 1  minimum, which is at a 
distance ( 2 / J 3 ) k 7  from the origin along the new 2 direction. 

We now need the effective potential energy in the neighbourhood of this minimum, 
and to get it we use perturbation theory as far as the third order on the Jahn-Teller 
matrix, noticing t,hat the energy to go in the denominators is 2k: .  The result is a 
potential energy 

(3X2Y - Y 3 ) .  
1 v = i ( X 2  + Y 2  + 2 2 )  - -&X2 + Y2) + - 

24 k ,  J6 

(22) 

The first two terms together give a harmonic potential of the form 3 Z 2  + f ( X 2  + Y 2 ) ,  
so to this approximation the states are harmonic oscillator states with a frequency 
1 in the 2 direction and a frequency a = J ( 2 / 3 )  in the X and Y directions. The 
uncoupled state is just a three-dimensional harmonic oscillator of frequency 1 at the 
origin of coordinates, and the overlap with the distorted oscillator states centred at 
2 = ( 2 / J 3 ) k 7  is obtained straightforwardly as 

where the exponential is the usual term coming from the overlap of oscillators with 
centres displaced by ( 2 / , / 3 ) k , .  

We next look at  the third-order term proportional to ( X 2  + Y 2 ) Z ,  and notice 
that it has the effect of shifting the distorted well nearer to the origin on average. 
Although this term only enters to  order l / k 7 ,  it will alter the overlap by a factor 
of order one because of the exponential variation of the overlap with distance. To 
calculate this extra overlap we need a solution of the Schrodinger equation that is 
valid to  order l / k 7 ,  and must avoid the lack of convergence resulting from the fact 
that the potential becomes negative when 2 ( X 2  + Y 2 )  or (3X2Y - Y 3 )  becomes large 
and negative. We do this by putting in a trial solution, and forcing the constants in 
it so that it becomes a solution to the required order. The trial solution is 

+ P ( X 2  + Y 2 )  + y)2 - fra(X2 + Y 2 ) ] } [ 1  - p(3X2Y - Y 3 ) ]  (24) 
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which is to be a solution t o  first order in /I, y and p ,  and is normalised to the same 
order. The  partial differentials of this are 

84/82 = [-z + P ( X 2  + Y 2 )  + 714 (25 )  

624/8z2 = -11, + [ Z  + P ( X 2  + Y 2 )  + rI24 
that  is 

a2$/az2 x [-I + z2 + 2 2 p ( x 2  + y 2 )  + 2 z y ] $  

8 $ / 8 X  = {-ax - 2 / 3 X [ Z  + P ( X 2  + Y 2 )  + 7]}4 - 6 p X Y  $J 

8 $ / 8 X  x (-ax - 2 P X Z  - 6 p X Y ) 4  

(28)  

(29 )  
that  is 

and 

that  is 
8 2 $ / 8 X 2  x (-a - 2 p Z  - 6 p Y ) $  + (-ax - 2 p X Z  - 6 p X Y ) 2 4  (30) 

d211,/8X2 x (-a + a 2 X 2  - 2 p Z  + 4 a / 3 X 2 2  - 6 p Y  + 1 2 a p X 2 Y ) 4  (31) 

which, with a similar result for the Y derivatives, gives 

024 Fz (-1 - 2 a + z2  + aZ(X2  + Y2) + ( 2  + 4 a ) P Z ( X 2  + Y2) 

+ (27 - 4P)Z + 6 p ( 3 X 2 Y  - Y3) )4  (32)  

Substituting this into the Schrodinger equation shows that  this trial wave function is 
a solution of energy f( 1 + 2a) in a potential 

V = f ( Z 2  + a 2 ( X 2  + Y 2 ) )  + (1 + 2 a ) P ( X 2  + Y 2 ) Z  + 6 a p ( 3 X 2 Y  - Y 3 )  + (y - 2 p ) Z  
(33 )  

which can be made the same as the potential (3) by putting 

Y = 2P 
1 

= ( 1  + 2 a ) 4 k T d 3  
1 ’ = 144akTd6  

(34) 

(35) 

and this result is correct t o  order l / k T .  

monic oscillator wave function centred at the origin, which is, in these coordinates 
We must now calculate the overlap o this wave function with the uncoupled har- 

40 = m e x p [ - i ( Z +  1 -pkT)’ 2 - i ( X ’ + Y 2 ) ]  
(37) 

To work out the overhp integral we rearrange the terms in the exponent t o  the 
form, correct t o  order l / k T ,  as follows 

$?bo= 

d 3  



In this form the integral over 2 is of standard Gaussian type, and can be done imme- 
diately. In integrating over X and Y we notice that the term in p integrates out to 
zero. The final result of these manoeuvres is to get the overlap in the form 

which is somewhat larger than the overlap in (4). 
We must next allow for the overlap of the electronic wave functions. Suppose the 

electronic wave function in the uncoupled state is (1, 0,O) in the original basis. After 
the change of basis and rotation used to produce equation (2) ,  the basis for the lowest 
state at  the bottom of the well is (1/,/3)(1, 1 , l )  so the overlap of the electronic states 
contributes a factor 1/J3. In principle we should also allow for the change in the 
electronic basis over the well, but it can be seen that the admixtures to  order 1/k, 
integrate out, so this only comes into the overlap to order l/k;. 

Table 5. Zerephonon line intensities. 

kr Intensity exp(-ijk?) Int,ensity/exp(-$k2,) 

3 4.5636 x 2.4787 X 1.8411 
4 4.1771 X 2.3309 X 1.7921 
5 1.0232 X lo-' 5.7777 x 10-8 1.7709 
6 6.6494 x lo-'' 3.7709 x lo-" 1.7614 

So far we have got the overlap of the uncoupled state with a ground state in one 
of the wells that appear in the lowest APES of the strongly coupled T @ r system. At 
this point it is necessary to  allow for the variation of the phase over this lowest APES, 
and we do it following O'Brien (1989) by a mapping that doubles the space. Using 
that mapping we have eight wells at  the vertices of a cube, and the lowest states are 
linear combinations of the lowest state in each well that have T,, and A,, symmetry. 
After the signs of the electronic overlaps have been allowed for, the only state with a 
non-zero overlap to  the (1,0,0)  uncoupled state is the Tlur state, as might be expected 
from the symmetry. For all other states the overlaps to the eight wells cancel, but for 
this state they all have the same sign and add up to  give an overlap 

1 8  -- 
J3 J8 'vi' 

where the factor 1/J8 allows for the normalisation of the T1,, linear combination in 
the approximation we are working in. A final numerical factor must, be included to 
adjust the normalisation of the uncoupled state. It must now be normalised over the 
doubled space, which introduces a further factor 1/J2 into the overlap. 

It only remains to  put in the values already obt,ained for (Y and P and square the 
overlap to get the zero-phonon line intensity as 

$S& = 1.607 95exp(-iR;). 

Comparison with table 5 shows a small but significant discrepancy between this result 
and the result of the numerical calculations. 
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8. Conclusion 

The mixture of numerical and analytical methods described in this paper suffice to  
show how the various reduction factors change with relative and absolute coupling 
strengths, and the variation of these parameters between the different styles of Jahn- 
Teller coupling should produce recognisably different patterns, from which something 
about the coupling could be deduced. Apart from the differences between BE and B,, 
i t  is worth noticing the difference too between the rates at which K(T,) is approaching 
zero in the different coupling regimes. In particular for T @ E there is a substantially 
larger range of coupling strengths for which the second-order term dominates the 
first-order one. 

The  result on the tunnelling splitting underlines the difficulty of getting the asymp- 
totic form for it numerically, but the agreement with the WKB calculation is encourag- 
ing. The  remaining small difference may be related to  the proximity of other potential 
energy surfaces (Polinger 1990). 

The  small difference between the numerical and analytic forms for the zero-phonon 
line intensity may be due t o  the use of perturbation theory in an inappropriate region. 
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